General Certificate of Education June 2007
Advanced Subsidiary Examination
MATHEMATICS
MPC1
Unit Pure Core 1

Monday 21 May 20079.00 am to 10.30 am

For this paper you must have:
\bullet an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.
You must not use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC1.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is not permitted.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The points A and B have coordinates $(6,-1)$ and $(2,5)$ respectively.
(a) (i) Show that the gradient of $A B$ is $-\frac{3}{2}$.
(ii) Hence find an equation of the line $A B$, giving your answer in the form $a x+b y=c$, where a, b and c are integers.
(b) (i) Find an equation of the line which passes through B and which is perpendicular to the line $A B$.
(2 marks)
(ii) The point C has coordinates $(k, 7)$ and angle $A B C$ is a right angle. Find the value of the constant k.

2 (a) Express $\frac{\sqrt{63}}{3}+\frac{14}{\sqrt{7}}$ in the form $n \sqrt{7}$, where n is an integer.
(b) Express $\frac{\sqrt{7}+1}{\sqrt{7}-2}$ in the form $p \sqrt{7}+q$, where p and q are integers.

3 (a) (i) Express $x^{2}+10 x+19$ in the form $(x+p)^{2}+q$, where p and q are integers.
(2 marks)
(ii) Write down the coordinates of the vertex (minimum point) of the curve with equation $y=x^{2}+10 x+19$.
(2 marks)
(iii) Write down the equation of the line of symmetry of the curve $y=x^{2}+10 x+19$. (1 mark)
(iv) Describe geometrically the transformation that maps the graph of $y=x^{2}$ onto the graph of $y=x^{2}+10 x+19$.
(3 marks)
(b) Determine the coordinates of the points of intersection of the line $y=x+11$ and the curve $y=x^{2}+10 x+19$.
(4 marks)

4 A model helicopter takes off from a point O at time $t=0$ and moves vertically so that its height, $y \mathrm{~cm}$, above O after time t seconds is given by

$$
y=\frac{1}{4} t^{4}-26 t^{2}+96 t, \quad 0 \leqslant t \leqslant 4
$$

(a) Find:
(i) $\frac{\mathrm{d} y}{\mathrm{~d} t}$;
(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}$.
(2 marks)
(b) Verify that y has a stationary value when $t=2$ and determine whether this stationary value is a maximum value or a minimum value.
(c) Find the rate of change of y with respect to t when $t=1$.
(d) Determine whether the height of the helicopter above O is increasing or decreasing at the instant when $t=3$.

5 A circle with centre C has equation $(x+3)^{2}+(y-2)^{2}=25$.
(a) Write down:
(i) the coordinates of C;
(ii) the radius of the circle.
(b) (i) Verify that the point $N(0,-2)$ lies on the circle.
(ii) Sketch the circle.
(iii) Find an equation of the normal to the circle at the point N.
(c) The point P has coordinates $(2,6)$.
(i) Find the distance $P C$, leaving your answer in surd form.
(ii) Find the length of a tangent drawn from P to the circle.

6 (a) The polynomial $\mathrm{f}(x)$ is given by $\mathrm{f}(x)=x^{3}+4 x-5$.
(i) Use the Factor Theorem to show that $x-1$ is a factor of $\mathrm{f}(x)$.
(ii) Express $\mathrm{f}(x)$ in the form $(x-1)\left(x^{2}+p x+q\right)$, where p and q are integers.
(2 marks)
(iii) Hence show that the equation $\mathrm{f}(x)=0$ has exactly one real root and state its value.
(3 marks)
(b) The curve with equation $y=x^{3}+4 x-5$ is sketched below.

The curve cuts the x-axis at the point $A(1,0)$ and the point $B(2,11)$ lies on the curve.
(i) Find $\int\left(x^{3}+4 x-5\right) \mathrm{d} x$.
(3 marks)
(ii) Hence find the area of the shaded region bounded by the curve and the line $A B$.
(4 marks)

7 The quadratic equation

$$
(2 k-3) x^{2}+2 x+(k-1)=0
$$

where k is a constant, has real roots.
(a) Show that $2 k^{2}-5 k+2 \leqslant 0$.
(b) (i) Factorise $2 k^{2}-5 k+2$.
(ii) Hence, or otherwise, solve the quadratic inequality

$$
2 k^{2}-5 k+2 \leqslant 0
$$

END OF QUESTIONS

